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Alzheimer’s disease 1s officially

I ENiEIscventh leading cause

in the United States in
2020 and 2021 with 32.4% and
31.0% death rates, respectively.



Neurodegenerative Disease - Alzheimer’s

Early Stage

MCI

Duration: 7 years

Disease begins in
Medial Temporal Lobe

Symptoms:
Short-term
memory loss

Mild Cognitive
Impairment

Mild
Alzheimer’s

a

Duration: 2 years

Disease spreads to
Lateral Temporal &
Parietal Lobes

Symptoms include:
Reading problems
Poor object recognition
Poor direction sense

Moderate

Alzheimer’s

Duration: 2 years

Disease spreads to
Frontal Lobe

Symptoms include:
Poor judgment
Implusivity
Short attention

Severe

Alzheimer's

Duration: 3 years
Disease spreads to
Occipital Lobe

Symptoms include:
Visual problems



Early Diagnosis and Biomarkers
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= Biomarkers are
effective, but it is
already too late when
brain markers are
% 5 obtained from a
e — W wwws | patient.




Language Markers

e An early detection approach of MCI that is affordable
and accessible.

e Extract language markers from conversations to build
predictive models

e Semantic, Syntactic, and Lexical features are used for
language markers

Semantic

“..1see agerman

shepherd deluge : Language Marker
§ ; :> Syntactic :> of Conversation

with two children...”
Extract Linguistic Feature Concatenate Semantic,
Syntactic, and Lexical

Subject’s Interview Transcription Lexical
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Problems of Language Markers (any digital ones)

- The data points are not independent and Wl L ] e L | |
identically distributed (i.i.d.) 4&; | =] %4 o)

- One subject will have multiple & J‘g‘q‘; L A ;”'.‘j[’.:
conversations, and these conversations’ 5 ,-;""" ity v o0 | oy o8 %-» o~
language markers form a cluster Syve. ® } <. Bt

- The way people speak can be il N O .f." ad .‘
drastically different o] 2

- Such differences are much more — '20 —

outstanding than subtle differences +SNE plot of language markers ot

characterizing cognitive capability (MCI or iy
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Challenges from Non-IID/Subject Bias

- Aclassifier may naturally pick up “easier” features during learning
- Easier features are ones that separate subjects rather than MCI/NL
- Performance degradation because they are not useful features

- Alarger dataset with more subjects may be helpful ...
- But not available :(

- Harmonization cannot be used due to unseen subjects in the testing

Study Design Web-enabled social interaction to delay cognitive decline among seniors with MCI:

. . - ) Project Number Former Number Contact Pl/Project Awardee Or
Study Type @ :  Interventional (Clinical Trial)
): 186 participants 1R01AG056102-01A1 1R01AG056113-01A1 Leader OREGON HE
:  Randomized DODGE, HIROKO SCIENCE Ul
HAYAMA

Intervention Model: Parallel Assignment
Masking: Single (Outcomes Assessor)
Masking Description: Study assessors will be blinded to the subject study arm assignment.

-

Primary Purpose: Prevention
Official Title: Internet-based Conversational Engagement Clinical Trial
Actual Study Start Date @ :  June 1, 2018
Actual Primary Completion Date @ :  August 31, 2021 10
Actual Study Completion Date @ :  August 31, 2021




Can we harmonize language markers
to remove subject bias?

so as to further improve cognitive predictive power



Subject Harmonization

e Key ldea
o Harmonized features should not be able to differentiate subjects under classifiers
o Harmonized features should be close to the original feature as possible

e Approach
o We train a feature harmonization network f

feature and X is harmonized feature
o The objective function is:

ry(-): X —X with parameter 6_, where x is original

Subject classifier Subject label

mln — +lmse(fru(xi), X;).
OFII W M
Encourage the harmonized features Encourage the similarity between
cannot be differentiate by subject harmonized features and original 12

identities features
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Key Result for Subject Harmonization

Before Harmonization After Harmonization
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t-SNE plot of language markers
Classifier Before harmonization After harmonization
Logistic Regression 0.921+£0.007 0.221£0.012
Multi-layer Perceptron 0.905£0.007 0.21940.038

Subject Classification Task Accuracy

o Subjectl

Subject 2
Subject 3
Subject 4
Subject 5

© Subject &

Subject 7
Subject 8
Subject 9

Subject 10

Subject clusters are successfully
destroyed by harmonization

Classifier cannot predict subject
identity of conversations after
harmonization
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Subject Harmonization Process

Stage 1: Harmonize features

Stage 2: Use harmonized features to predict cognitive status (MCI or NL)

Stage I: Train Feature Harmonization Network

X
Original
Feature

Vector

Deep Feature
Harmonization (FH)

=

Harmonized
Feature
Vector

Fix Harmomization
Network after
Stage |

X
Original
Feature

Vector

Stage II: MCI Detection after Harmonization

Trained Deep Feature
Harmonization (FH)

=

Subject
Classification

=0

Harmonization Loss
Minimizes Subject Differentiation
and Maintains Values

min = e B, ys) + £nse( E, %)

Harmonized
Feature
Vector
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MCI Detection

=0

Classification Task
Maximize MCI Detection

min €(@ ,y.)




Key Quantitative Results

Performance metrics

Task
Classifier AUC F1 Sensitivity =~ Specificity
Conversation classification
N —— LR 0.58340.098 0.557+0.092 0.570+0.123 0.55740.101
RECRIEREISIER MLP  (0.59440.092) 0.556-:0.088 0.545+0.116 0.6110.091
After harmonization LR 0.64040.097 0.5814+0.089 0.575+0.129 0.625+0.132
MLP [0.646d:0.092] 0.558+0.101 0.541+0.136 0.640+0.126
Subject classification
Before harmonization LR 0.5914+0.124 0.579+0.126 0.593+0.166 0.5684-0.169
MLP [0.626i0.122] 0.593+£0.124 0.576%+0.153 0.649+0.159
After harmonization LR 0.6494+0.121 0.59240.115 0.575%0.157 0.652+0.162
MLP [0.657:|:0.113] 0.571+0.118 0.546+0.152 0.655+0.152

Take away: Subject Harmonization improves predictive performance on both

cognitive classification tasks (conversation-wise and subject-wise)



Discussions and Future Work

e \alidate Subject Harmonization on different modality such as speech or
brain imaging other than language markers.

e Can we deploy subject harmonization in privacy-aware collaborative
learning (e.g., federated learning)?
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Thanks!

http://illidanlab.github.io
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