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Alzheimer’s disease is officially listed as the 
seventh leading cause of death in the United 

States in 2021 and 2022 with 31.0% and 28.9% 
death rates, respectively.

 Kochanek KD, Murphy SL, Xu JQ, Arias E. Mortality in the United States, 2022. NCHS Data Brief, no 492. Hyattsville, 
MD: National Center for Health Statistics. 2024. DOI: https://dx.doi.org/10.15620/cdc:135850



Neurodegenerative Disease - Alzheimer’s 
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Early Diagnosis and Biomarkers
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Medical Imaging is High Dimensional
● Brain imaging is high dimensional with rich information 

○ Brain volume 1,200,000 mm3

○ Voxel sizes 1-3 mm in 1.5T or 3T scanners 
○ ~1 Million voxels in one brain scan. 
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Medical Imaging has a Small Sample Size
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● Limited sample size due to acquisition costs. 
Examples:

● ADNI: Alzheimer’s Disease Neuroimaging Initiative
○ Longitudinal, multi-center, observational study, with the goal to 

validate biomarkers for Alzheimer’s disease (AD) clinical trials.
○ Stage I: 5 years, $60 million
○ 819 samples for machine learning studies.

● ENIGMA: Enhancing Neuro Imaging Genetics 
Through Meta Analysis

○ Brings together researchers in imaging genomics to 
understand brain structure, function, and disease

○ 50 working groups across the world
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Batch Effect from Multi-Site Analysis 

[1] J. Yang, K. Zhou, Y. Li and Z. Liu, Generalized out-of-distribution 
detection: A survey (2021) 6

Affected by batch effect, 
resulting in non-i.i.d data ● High Dimensionality: 

Large-scale brain imaging data 
(and prior knowledge) is required 
to train an effective machine 
learning model

● Sample Size: We need to collect 
from multiple sites using different 
scanners, leading to batch effect.

● Batch effects can lead to poor 
generalization and unstable 
predictions for machine learning 
model [1].



ComBat Harmonization
● ComBat is a well-known 

harmonization technique and has 
been shown to be helpful in 
mitigating the batch effect of 
neuroimaging data.
○ Model and estimate 

site-wise batch effects. 
○ Remove batch effects for 

downstream analysis tasks.
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Limitation of ComBat
● However, ComBat is incompatible 

with harmonizing brain imaging from 
unseen sites without retraining, which 
introduces significant 
computational cost.
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Our Approach
● We assume that some sites may exhibit clustering 

patterns.
○ Sites may share similarity
○ Sites in same cluster can share ComBat 

estimated batch effect.
● Using this assumption, we proposed Cluster 

ComBat to eliminate the need of retraining as 
original ComBat.
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Cluster ComBat
● Instead of estimating 

site-wise batch effects, 
Cluster ComBat estimates 
cluster-wise batch effects.
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Cluster ComBat
● The pre-estimated 

cluster-wise batch effects 
can be used to harmonize 
brain imaging from unseen 
sites from same clusters 
without the need of 
retraining.
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Privacy Risk of Distributed ComBat
● Sharing data directly among multiple sites to apply harmonization poses challenges to 

data security and patient privacy protection.
○ Direct training on all the data is often impractical in the medical domain.
○ A distributed version of the original ComBat method, known as Distributed 

ComBat, already was proposed [1].
● Based on their framework, we have developed a distributed version of our proposed 

method, called Distributed Cluster ComBat.

 

[1] Chen, A. A., Luo, C., Chen, Y., Shinohara, R. T., & Shou, H. (2022). Privacy-preserving harmonization via distributed ComBat. In NeuroImage 
(Vol. 248, p. 118822). Elsevier BV. https://doi.org/10.1016/j.neuroimage.2021.118822
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Distributed Cluster Combat
● In decentralized settings, we cannot use raw brain imaging data to train K-means. 
● Instead, we use locally estimated parameters for K-means.
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Distributed Cluster Combat
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Distributed Cluster Combat
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Downstream Task Performance

18

● ADNI Dataset
● Use Linear Regression to predict the 6 prediction tasks (MEM, MEM SLOPES, 

EXF, EXF SLOPES, LAN, and LAN SLOPES variables) using 228 ROI features of 
DTI brain imaging
○ Outperform baselines on all 6 tasks for both centralized/decentralized settings



Time Efficiency
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Average time of running 100 experiments MEM regression task.
● Centralized: 2x speedup
● Decentralized: 4x speedup



Discussion and Future Works
● Cluster-based Combat for both 

centralized/decentralized settings
● Capable to generalization on unseen sites without 

re-training  
● Design for privacy concern in medical/biomedical 

domains
● Integrating with the ENIGMA Consortium toolbox to 

further validate existing studies
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Thanks!
http://illidanlab.github.io
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