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Alzheimer’s disease 1s officially listed as the

seventh leading cause of deathfliliCHBIiesTl

States in 2021 and 2022 with 31.0% and 28.9%
death rates, respectively.



Neurodegenerative Disease - Alzheimer’s

Early Stage

MCI

Duration: 7 years

Disease begins in
Medial Temporal Lobe

Symptoms:
Short-term
memory loss

Mild Cognitive
Impairment

Mild
Alzheimer’s

a

Duration: 2 years

Disease spreads to
Lateral Temporal &
Parietal Lobes

Symptoms include:
Reading problems
Poor object recognition
Poor direction sense

Moderate

Alzheimer’s

Duration: 2 years

Disease spreads to
Frontal Lobe

Symptoms include:
Poor judgment
Implusivity
Short attention

Severe

Alzheimer's

Duration: 3 years
Disease spreads to
Occipital Lobe

Symptoms include:
Visual problems



Early Diagnosis and Biomarkers
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Medical Imaging is High Dimensional

e Brain imaging is high dimensional with rich information
o  Brain volume 1,200,000 mm3
o Voxel sizes 1-3 mm in 1.5T or 3T scanners
o ~1 Million voxels in one brain scan.
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Medical Imaging has a Small Sample Size

Alzheimer’s
e Limited sample size due to acquisition costs. ADN g:ffosi;aging
Examples: Initiative
o

ADNI: Alzheimer’s Disease Neuroimaging Initiative
o  Longitudinal, multi-center, observational study, with the goal to

validate biomarkers for Alzheimer’s disease (AD) clinical trials
o Stage |: 5 years, $60 million

o 819 samples for machine learning studies
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e ENIGMA: Enhancing Neuro Imaging Genetics ~ e ?
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Brings together researchers in imaging genomics to
understand brain structure, function, and disease
50 working groups across the world
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Batch Effect from Multi-Site Analysis

Affected by batch effect,
resulting in non-i.i.d data

High Dimensionality:
Large-scale brain imaging data
(and prior knowledge) is required
to train an effective machine
learning model

Sample Size: We need to collect
from multiple sites using different
scanners, leading to batch effect.
Batch effects can lead to poor
generalization and unstable
predictions for machine learning
model [1].

[1]J. Yang, K. Zhou, Y. Li and Z. Liu, Generalized out-of-distribution
detection: A survey (2021) 6



ComBat Harmonization

ComBat is a well-known
harmonization technique and has
been shown to be helpful in
mitigating the batch effect of
neuroimaging data.
o Model and estimate
site-wise batch effects.
o Remove batch effects for
downstream analysis tasks.

—> Training -----3 Inference

» ComBat Harmonization: y;;; = oy + X484 + Vig + 0ig€ijg
+ Estimate site-wise batch effect ;, for each site ¢
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Fortin, Jean-Philippe, Nicholas Cullen, Yvette I. Sheline,
Warren D. Taylor, Irem Aselcioglu, Philip A. Cook, Phil Adams et
al. "Harmonization of cortical thickness measurements across
scanners and sites." Neuroimage 167 (2018): 104-120.




—> Training ---:» Inference
« ComBat Harmonization: y;j; = ag + X8 + Vig + dig€ijg

Limitation Of ComBat  Estimate site-wise batch effect v, for each site 2

P

e However, ComBat is incompatible
with harmonizing brain imaging from
unseen sites without retraining, which
introduces significant
computational cost.
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Our Approach

e \We assume that some sites may exhibit clustering
patterns.
o Sites may share similarity
o Sites in same cluster can share ComBat
estimated batch effect.
e Using this assumption, we proposed Cluster
ComBat to eliminate the need of retraining as
original ComBat.

PCA component 2
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Cluster ComBat

Instead of estimating
site-wise batch effects,
Cluster ComBat estimates

cluster-wise batch effects.

—>» Training e » Inference

+« KMeans to decide the cluster index c for the unseen site
» Cluster ComBat Harmonization: ycjq = atg + X¢jBg + Veg + Ocgeig
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Cluster ComBat

e The pre-estimated
cluster-wise batch effects
can be used to harmonize
brain imaging from unseen
sites from same clusters
without the need of
retraining.

—>» Training e » Inference

+« KMeans to decide the cluster index c for the unseen site
» Cluster ComBat Harmonization: ycjq = atg + X¢jBg + Veg + Ocgcig
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Privacy Risk of Distributed ComBat

e Sharing data directly among multiple sites to apply harmonization poses challenges to
data security and patient privacy protection.
o Direct training on all the data is often impractical in the medical domain.
o Adistributed version of the original ComBat method, known as Distributed
ComBat, already was proposed [1].
e Based on their framework, we have developed a distributed version of our proposed
method, called Distributed Cluster ComBat.

[11 Chen, A. A., Luo, C., Chen, Y., Shinohara, R. T., & Shou, H. (2022). Privacy-preserving harmonization via distributed ComBat. In Neurolmage
(Vol. 248, p. 118822). Elsevier BV. https://doi.org/10.1016/j.neuroimage.2021.118822
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Distributed Cluster Combat

e In decentralized settings, we cannot use raw brain imaging data to train K-means.
e Instead, we use locally estimated parameters for K-means.

—>» Training e » Inference
Locally estimate the ComBat parameters first
KMeans based on site parameters
Parameter aggregation in each cluster
KMeans to decide the cluster index c for the unseen site
Cluster ComBat Harmonization: y.j; = ag + X¢jfg + Yeg + Ocg€cjg
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Distributed Cluster Combat

—>» Training e » Inference
o Locally estimate the ComBat parameters first
« KMeans based on site parameters
« Parameter aggregation in each cluster

KMeans to decide the cluster index c for the unseen site
Cluster ComBat Harmonization: ycj; = g + X¢jBg + Yeg + Ocg€eig
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Distributed Cluster Combat

—>» Training

------- » Inference
o Locally estimate the ComBat parameters first
« KMeans based on site parameters

« Parameter aggregation in each cluster

+ KMeans to decide the cluster index c for the unseen site

+ Cluster ComBat Harmonization: ycjq = oty + XcjBg + Veg + cg€ecig
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Downstream Task Performance

e ADNI Dataset
e Use Linear Regression to predict the 6 prediction tasks (MEM, MEM SLOPES,
EXF, EXF SLOPES, LAN, and LAN SLOPES variables) using 228 ROI features of
DTI brain imaging
o Outperform baselines on all 6 tasks for both centralized/decentralized settings

Algorithm | MEM MEM SLOPES EXF EXF SLOPES LAN LAN SLOPES
Centralized Setting
Without harmonization 13.77+22.05 1.8943.59 10.30+19.38  1.58+3.19  10.94+17.74 1.45+3.01
Generalized Linear Squares Approach [41] 1.07+0.30 0.52+0.18 0.93+0.22 0.47+0.18 0.95+0.26 0.45+0.13
ComBar!@) 1.000.18 0.16+0.04 1.0340.18 0.13+0.04 1.04£0.20 0.13£0.03
Cluster ComBat 1.00+0.20 0.15+0.03 0.91+0.12 0.12+0.03 0.87+0.15 0.12+0.02
Decentralized Setting
Distributed ComBat!4] 0.98+0.16 0.15+0.03 1.0040.16 0.13+0.03 1.010.17 0.1240.03
Distributed Cluster ComBat 0.91+0.16 0.14+0.03 0.96+0.12 0.12+0.02 0.91+0.17 0.11+0.02




Time Efficiency

Average time of running 100 experiments MEM regression task.

e Centralized: 2x speedup
e Decentralized: 4x speedup

Algorithm | Average Time (s)
Centralized Setting
ComBarl4] 0.2427+.0.0017
Cluster ComBat 0.1127+.0.0001

Decentralized Setting

2.5051+0.0771
0.6389+.0.0027

Distributed ComBat!4!
Distributed Cluster ComBat




Discussion and Future Works

e Cluster-based Combat for both /%?(
centralized/decentralized settings ral A TRy

e Capable to generalization on unseen sites without B S
re-training 2 Sl

e Design for privacy concern in medical/biomedical ENIGMA
domains

e Integrating with the ENIGMA Consortium toolbox to
further validate existing studies
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Thanks!

http://illidanlab.github.io
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